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Average stresses and force fluctuations in noncohesive granular materials
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A lattice model is presented for investigating the fluctuations in static granular materials under gravitation-
ally induced stress. The model is similar in spirit to the scglarodel of Coppersmitlet al.[Phys. Rev. 553,
4673 (1996, but ensures balance of all components of forces and torques at each site. The geometric ran-
domness in real granular materials is modeled by choosing random variables at each site, consistent with the
assumption of cohesionless grains. Configurations of the model can be generated rapidly, allowing the statis-
tical study of relatively large systems. For a two-dimensiof2)) system with rough walls, the model
generates configurations consistent with continuum theories for the average stedi®sthe q mode)
without requiring the assumption of a constitutive relation. For a 2D system with periodic boundary conditions,
the model generates single-grain force distributions similar to those obtained frapmtbdel with a singular
distribution ofqg’s. [S1063-651X98)05203-9

PACS numbegps): 81.05.Rm, 62.40:i, 02.50.Ey

INTRODUCTION which vertical forces are supported in a noncohesive mate-
rial. In such a model it is possible for very large fluctuations
The microscopic stress field in a static granular materiato arise, even on scales as small as a lattice constant. The
has an extraordinarily complex structure. Viewed from theconstitutive assumptions of continuum models are replaced
perspective of standard elasticity theory, the geometric dishere by an ansatz concerning the form of the microscopic
order in the packing of grains gives rise to extremely com-effects of geometric disorder in the material. The central re-
plicated boundary conditions on the stress equilibrium equasult of Ref.[6] is that for infinitely wide layergor materials
tions. In general, this disorder is rather difficult to subject to periodic boundary conditions in the horizontal di-
characterize statistically and may even exhibit nontrivial cor+ections, fluctuations in the vertical forces supported by
relations induced by the dynamical history of the material. grains at a given depth are of the same magnitude as the
At present, the overwhelming majority of attempts to average force supported at that depth. An elegant calculation
model granular materials are formulated at the level of sshows that the probability distribution for the vertical force
continuous stress field, which is intended to represent aupported by a grain deep in the pile has an exponential tail,
smoothed version of actual stresses, averaged over regiorgther than Gaussid6].
large compared to the grain size. In order to close the system For all its merits, theq model has three serious flaws.
of stress equilibrium equations, a constitutive relation musFirst, it takes no account of the constraints imposed by hori-
be assumed, such as the Mohr-Coulomb condition that thzontal force balance and torque balance on each grain and
material is on the verge of yielding at everywhere within athus does not contain the proper conservation laws at the
plastic zone. While this conditiofiL] and others like if2,3]  microscopic level. This may constitute a flaw that leads to
have met with some success in many different situationgncorrect predictions, though it is also possible that the con-
they rest ultimately omd hocassumptions about the connec- straints in question do not affect the large-scale behavior.
tion between the microscopic and macroscopic stresses. Second, when studied in the silo geometry, themodel
One factor that could in principle pose fundamental diffi- yields predictions for the average stresses that dramatically
culties for continuum theories for the average stress is thalisagree with classical theories and experimégts While
fluctuations in the microscopic stresses may be quite largejuantitative agreement may not be expected given the crude
perhaps large enough to invalidate typical assumptions abougepresentation of the boundary conditions that must be used
the scales over which the material can be modeled as a coiit constructingg model configurations, the qualitative dis-
tinuum. In several recent experiments that directly image th&repancy is striking, as explained below. Finally, there is no
stress field, stress chaindilamentary configurations of clear procedure for connecting the lattice constant inghe
strongly stressed grainkave been observed with correlation model to a physical length scale.
lengths that are apparently limited only by the system size In this paper, a model is presented that explicitly incorpo-
(though the systems have not been much larger than 30 grarates the relevant force and torque balance constraints into
diameters in the relevant dimensjdd,5]. For these reasons the lattice approach of the model and provides a natural
it is important to obtain some theoretical understanding oftonnection between the lattice constant and the grain size.
what determines the size and spatial structure of the fluctuastress distributions are then computed for the silo geometry
tions. with force-bearing walls and with periodic boundary condi-
Coppersmithet al. recently stimulated interest in a sim- tions. It is shown that the present model gives much better
plified statistical approach to stresses in granular materialagreement with previous theories and experiments in the silo
with the introduction of the § model,” a lattice model geometry and thus appears to be a more reliable basis for
whose configurations are intended to represent the way imvestigating the subtleties of the stress fluctuations. Numeri-

1063-651X/98/5{3)/320412)/$15.00 57 3204 © 1998 The American Physical Society



57 AVERAGE STRESSES AND FORCE FLUCTUATIONS IN ... 3205

cal results are then presented for the single-grain weight dis-
tribution from the model at large depths. The single-grain (@) 0 @ 2r
weight distributions are similar in form to those obtained in <>“<><>
theq model and therefore may be thought of as providing a <>

firmer foundation for thag model predictions.

It is useful to make a conceptual distinction between the
definition of the basic lattice with appropriate variables de-
fined on it and the assumptions about those variables that are
relevant for the study of noncohesive granular materials. The
geometric structure of the model is a square lattice with vari-
ables representing net normal forces, couples, and tangential
forces on each edge. This structure will be referred to as the
“nctlattice.” Every possible stress field in any type of static
medium can be mapped to a configuration onril¢ lattice.

(The mapping is many to oneln order to model a nonco-
hesive granular material, several restrictions must be made
on the values of the normal forces, couples, and tangential
forces at each edge and an ansatz must be made for form of
the disorder in the system. A particular model that incorpo-
rates these restrictions will be called ther “model,” for
reasons that will become apparent below. FIG. 1. Definition of thew model.(a) The lattice of square cells.

The paper is organized as follows. In Sec. Il #aenod- Shaded ceII_s rgpresent walls fo_r_the silo geometry and identified
el is defined for two-dimension&2D) systems and the con- cells for p_erlodlc bogndary (_:ondltlons. Dashed edges are ass_umed
nections of the model parameters to physical parameters ang transmit no fgrce in th'e silo geometry. The cells marked with a
constraints are discussed. In Sec. Il results are presented f39¢ dot constitute a single layer. The thick edges are used to
the case of narrow silos with rough walls in two dimensionstomPUt® th.e force on a layer to compare W'th. the Janssen solution.
and contrasted with results obtained from thenodel. In (b).The varlable§ .used. to dgscnbe th.e stre§s in a single cell and the
Sec. lll results are presented for the case of wide 2D systemusnlt vectors defining directions mentioned in the text.
with periodic boundary conditions. The final section includes .
a discussion of some general issues and the generalization of P€note the amplitudes of the normal forces on the four
the @ model to three dimensions. edges of cellij by N{'"”, NG, n{"", and nf"; the

couples byC{'r, c§Dr, c{"Dr, andc!r; and the tangen-
tial force amplitudes byr{", T4V () andti) | as

I. THE « MODEL IN TWO DIMENSIONS shown in Fig. 1b). We will drop the superscript whenever
) this leads to no ambiguity. BotN andn refer to the ampli-
A. The nct lattice tude of the net compressive force between the cells sharing

Consider an arbitraryfpossibly highly inhomogeneous an edge: Negative values would indicate a net tensile force
material that is known to be in static stress equilibrium. Forbetween them. The sign convention for tangential forces is
present purposes, the material is taken to be two dimension&hosen such that positive or t always indicates a positive
and the following lattice representation of the stress field igslownward component of the force exerteygithe cell with a
defined.(See Fig. 1. higher centeon the lower one. The sign convention for the

A square lattice is constructed, with each cell representingouples is that the directions indicated in Figb)lcorre-

a portion of the material. The length of each cell edgeris 2 spond to positive values of each of thgs and C;’s. This

A horizontal row of cells sharing vertices, such as thosechoice allows the right-left symmetry of the model to be
marked with a dot in Fig. 1, will be called a “layer” of cells. immediately evident in the equations below. Note that the
Cellij is defined as théth cell from the left in thejth layer ~ uppercase variables associated with a given cell are identi-
from the top, with the left edge being defined as shown incally equal to the lowercase variables for the cell sharing the
Fig. 1 for even or odd. Note thatj increases downward, relevant edge. For exampl&l{")=n{"1"1 (or n{~11~1)
which is also defined as the positiyedirection. for j even(or odd.

Associated with each edge in the lattice are a normal In terms of the canonically defind@] microscopic stress
force, a tangential force, and a couple. Taken together, thegensoro(r), these forces and couples can be written as inte-
three quantities fully determine the force and torque exertegdrals over their respective edges. For example, le&jnand
on one cell about its center by the other cell sharing thae, be unit vectors in thg—x andy+ x directions, as shown
edge. The couple is necessary to represent the torque that canFig. 1(b), and lettings run from —r to r along the edge:
be applied to a cell even in the absence of tangential forces,
due to the manner in which the normal force is distributed N, = — fr dse - o(s)-e (1)
along the edge. The couple is here defined so that it does ! ot 1
include the contribution of the tangential force to the torque.

The contribution from tangential forces is just equalrto .
times the net ampll_tud_e of the tangential force, regardless of T,=— f dse, a(s) e, )
how that force is distributed along the edge. —r
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1(r the lattice, solving Eq9.10)—(13) for each cell. The process
Ci=— Fj ds se;- o(s)-ey, (3)  begins by specifying values af andu for each cell and\,,
o N,, T4, Ty, Cq, andC, for the cells in the top layer.
where the integrals are over surfagdiges in two dimen- Given the values of the uppercase variables at a partic_ular
siong that may cut through grains and/or contacts betweefell the six lowercase variables must be determined. Since
grains. these variables are constrained by E@, (7), and(9), the
Static equilibrium at the microscopic level requil@} space of possible solutions is then three dimensional and can
be parametrized by three real numbess a4, anda,. The
aik—pY;=0, (4) manner in which these three numbers are determined at each
) ] ) o cell must reflect the physics of the material being modeled.
whe_rep is the_l_ocal density and is the gravitational a_lccel- It is convenient to make the definitiorg=a; ny, C,
gratlon. Requiring that the total force on a cell vanish, one= a, Ny, and ay=T,+C,—t;+Cc,+u. The force and
finds torque balance equations for a single cell can then be written
as
fﬁa.kd& Mg ® N+t +Ny+t,=Ny+T1+No+ To++2mg, (10
wherem= [p dV is the mass of the material in the cell and L N T
dS, is thekth component of the outward normal to surface 1=t =Nt =Ny =Ty =Nt T, (1)
elementS. Takingg to be in the positivey direction(down-
ward) and performing the integral over the entire cell, the timantap=To+ Cotu, (12
andy components of Eq(5) yield the following equations
for vertical and horizontal force balance: ta—aNytap=Ty+Cy—u, (13
Ni+t+ny+t,=Ny+T;+Ny+To+ \/Emg, (6) where the torque equation has been split into two so that it
may be expressed in a symmetric formmifandu are given
Ni—t;—Ny+t,=N;—T;—No+T,. (7)  for every cell, then the microscopic true stress field induces a

unigue configuration of triplesa(y,a4,a5) on the lattice.
Similarly, the vanishing of the total torque about the center In a noncohesive granular material consisting of convex
of the cell requires grains, the grains can “push” on each other, but never
“pull”; i.e., there can be no tensile forces in the material on
_ _ _ _ scales larger than the grain size. This feature is incorporated
fﬁ ASx(any=ayy)* fﬁ Sy oy o) jng dV=0. {0 the & model by imposing two restrictionst) All nor-
€S) mal force amplitudes; andn, must be positive anéii) all
a4's and a,’s must lie in the interval] —1,1]. Both restric-
tions are consequences of the assumption that there are no
t,—Ci—ty+Cy= —T;—Cy+ T+ Cyo+2u, (9 tensile forces anywhere along the cell edge. The maximal
couple that can be produced by a given normal force ampli-
where 1= (/2/r)fdV pgx. (A torque about the center of tude corresponds to the case in which the entire normal force
the cell may be exerted by gravity because the center of mads applied at one corner of the cell, in which case(or a;)
of the material in the cell need not coincide with the geometis * 1. The assumption is not rigorously valid since there can
ric center) be tensile forces in the interior of a grain that is cut by the
The lattice and variables just described, together with th&dge of a cell. The central hypothesis of themodel, how-
fundamental physical force and torque balance constraintgVver, is that the geometric randomness in the grain positions
constitute thenct lattice. A “configuration” of the lattice ~can be replaced by the randomness in the choice of the so-
denotes a set of values of"), ni) ¢ ) () lution for each cell. In this context, restrictiofi$ and(ii) are
t(zi,j)’ m(-D, andul) for all ij that satisfy Eqs(6), (7), and valid as long as the cell size is larger than or equal to the

(9) for everyij. Each configuration is a discrete representagram_S’izde'I d that th hod of ing f
tion of a possible stress field and any possible stress fielgoIt Is duly noted that the method of propagating forces

induces a configuration. Thus timet lattice structure may whn f“’m the top of the system does not faithfglly represent
tlhe physics in the following sense. The equations of stress

be a useful tool for investigating stresses in a wide range of -~ F'J L . .
inhomogeneous materials. equilibrium are elllp_tl_c equations whose solutions depend. on
the boundary conditions on all of the system’s boundaries.
For the propagation method employed in #aemodel, the
only cells that can be affected by a change in the distribution
We now turn to the modeling of noncohesive granularof forces on a given cell are the ones that lie in a downward
materials on theict lattice. In the spirit of they model itis  opening cone with 45° edges, and in this respect the model is
assumed that a typical stress distribution can be obtained hyore appropriate to a hyperbolic system. The goal here,
propagating the forces from top to bottom on the lattice. Thishowever, is to construct the simplest model consistent with
assumption is made for the sole purpose of allowing thehe relevant stress balance constraints and capable of display-
rapid construction of plausible force configurations. In the ing nontrivial fluctuations. In addition, it should be noted that
model, configurations are generated by descending throughe classical approach to the computation of stresses via

which leads to

B. Definition of the @ model
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Mohr-Coulomb constitutive relations also transforms the
problem into a hyperbolic one and the computational method
of propagating stresses downward from the top is routinely
exploited in this context as we[l9]. The development of
rigorous elliptic methods for generating consistent configu-
rations is an interesting and potentially important problem as
well, but is beyond the scope of this work.

The adoption of a hyperbolic method necessarily leads to
a third restriction on the force amplituddsi) All tangential
force amplitudes must be positive. In the absence of this
restriction it is impossible to ensure that restrictionabove
can be met for every cell. That is, if negative tangential am-
plitudes are permitted to occur, then it can happen that for
some cell deeper in the system all solutions to Efk.(7),
and(9) have a negative value of eithef or n,. On the other
hand, it can be shown, using the method described in Sec.
| C, that restriction(iii) guarantees a consistent solution for
every cell.

The final assumption defining the model is that geo-
metric randomness in the structure of a granular material can
be effectively modeled by assigning equal probability to all
possible solutions to the force and torque balance equations _ _ . .
at each cell. This requires defining a particular measure on F'C: 2: Direct solution for a single cella) A straightforward

the space of solutions. In the absence of any good reason fg=c in which forces are propagated directly through the IR
) case in which the propagated force rays intersect the same edge of

choose otherwise, it will be as.'.sumed that all \{algeg of th‘?he cell. The two vector forces must then be summed as shown to
triple (ag,a1,a5) that are consistent with restrictiorig— obtain the solution

(iii) above are equally probable. Throughout the rest of this

E:\Bgrﬂlwtevllgn?:oar?g ta:llj_mgdf,();‘oévzrrnpclg:ty, that all cells maximizing a statistical entropy associated with the possible
N y ) ways of constructing microscopic configurations consistent

o e e e h n posed average s 0], bt afers n
9 9 9 ' e average stress field in the model is not given in ad-

tion | C presents a geometric picture of the solution space Ol ance
the force and torque balance equations for a single cell. The '

picture provides useful insight into the need for restriction

(iii) and also reveals that the cell size in the model must be C. Solving the force and torque balance equations

interpreted as the grain size. in a single cell

The g model may be thought of as a rather drastic sim-  For the purposes of this subsection we will tae 0.

plification of the « model in which Eqs(7) and (9) are  The effects of gravity can be included in a straightforward
ignored. The horizontal components of the forces can then bganner once the graphical method is understood.

neglected and it becomes more convenient to work with vari- Al of the information contained in the values &, C,
able w;=(n;+t))/y2 and W,=(N;+T;)/2. Equation(7)  andT on one edge can be encoded in a single vector placed

can then be written as at some position along the edge. The vector itself represents
the sum of the normal and tangential forces and the position
w1 =q(W;+W,+mg), (14 is chosen such that the torque that would be produced about
the center of the cell by the normal component of the force is
W2=(1-q)(Wy+W,+mg). (15  equal toC. Thus the net effect of any configuration of

stresses in the cell can be expressed graphically by drawing
In the g model, q at each site is an independent randomthe four vectors, one on each edge.
number chosen from some distribution with support only on  Now given the vectors on the upper edges of a cell we
the interval[0,1]. The lack of correlation betweeg's at  would like to determine all the possible ways of assigning
different sites is an important feature in the asymptoticvectors to the lower edges. One solution is immediately ob-
analysis of Coppersmitlet al. [6]. Note that thea mod-  vious and will be called the “direct solution.” Simply con-
el differs from theq model in that the random variables at struct rays originating from the vectors on each edge, then
each cell cannot be chosen in advance, but only after thtake the lower vectors to be equal and opposite to the upper
forces have been propagated down to the cell. If all ofdhe vectors and positioned where their respective rays intersect a
are fixed in advance, negative tangential and normal forcelwer edge.(See Fig. 2. Each ray will be called a “ray of
are quickly generated and the amplitudes diverge rapidlyorce,” though it is understood that the stresses represented
with increasing depth. Thus the “maximally randonm¥ are not really concentrated on the ray. The only complication
model does contain correlations that are direct consequencésat can arise is that both rays of force intersect the same
of the additional force and torque balance constraints. In thitower edge. In this case, the vector assigned to this edge is
sense it is related to attempts to derive force distributions byhe sum of the two, positioned such that the couple associ-
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(a) (b) sile forces. To see this, consider the description of the con-

figuration using cells of smaller scal¢he dashed cells in
Fig. 3(c)]. It can be shown that it is impossible to construct a
network of force rays on the smaller cells that would be
represented by the network shown on the large cell, without
having tensile segments that cross the boundaries of some of
the small cells(The situation corresponds to that of a hori-
zontal beam clamped at one end and supporting a load on the
other, in which case the top portion of the beam is under
tension)

Thus, if all possible solutions of the force and torque bal-
ance equations occur with equal probability, the material
within a cell must be assumed to support tensile forces and
hence must be on the order of or smaller than the grain size.
Together with the reasoning leading to restrictig)) this
leads to the conclusion thtte cell size in thexr model must
be the grain size.

In practice, the region ia-space that yields solutions that
satisfy restrictiongi)—(iii ) is not easily identified. Restriction
(i) immediately implies thair; and«, must lie in the inter-
FIG. 3. Splitting of force rays and tensile forces within a cell. \/g] [ —1,1]. Using Eqs(10—(13) and restrictionsi)—(iii ), it

.(a) A yertex invol\{ing only positiye force amplitydeép) A vertgx can also be shown that, must lie in the range
involving a negative force amplitudéc) A solution in a cell in-

volving a negative force amplitude. The smaller dashed cells canbe — N, —N,+C;+C,— V2m g<2ao<N;+N,+C;+C,
used to argue that real tensile forces must be associated with this
configuration. +2T,+2T,— \/Em g.

ated with it is the sum of the couples associated with the two. (16)
(See Fig. 2. Note that the direct solution is guaranteed to hus th . . f . luti b

exist if and only if each ray of force is guaranteed to intersecT us t e e_ntlre region o conslste_nt solutions m_ust € con-
a lower edge rather than exiting the cell through the otheFa"_"ad within a rectan_gular region mspace. To give e_qual
upper edge. This will be true whenever the normal and tan\_/velght to every solution consistent with the restrictions, a

gential amplitudes on the upper edge are both positive and Roint is _selected at random according to a uniform probabil-
directly related to restrictiofiii) above. ity density throughout the rectangular box. The values 0f

To construct solutions different from the direct solution, "2’ ty, andt, are then compgted from quo)f(lg.)' If any
note that force and torque balance can be preserved by hal f these quantltles IS negatlye, the sglutlon IS d|.sca.rded and
ing a ray of force split into two rays at some arbitrary pointt '€ Process 1S r_epee}te_d until a consistent solution is found.
in the cell, as shown in Fig.(8). The force associated with Since every p0|_nt within the rectangular box_has an equal
each ray is directed along the ray and the force amplitudegr()bab'l't.y of being chosen on every att.empt, I foII_ows e
are then fixed by requiring that the three forces sum to zerd2Very point th"?‘t corresponds to a consistent solution has an
Torque balance is guaranteed because none of the thr€4ual probability of being selected. ,
forces generates any torque about the splitting point. Simi- " SOMe cases, it may turn out that the set of consistent

larly, two rays of force that intersect can be merged into asolutions occupies a very small region of the rectangular box

single ray of force emanating from the point of intersection.S° that the probability of finding a solution by random guess-

Whenever all three rays of force intersecting at a singld"d IS Prohibitively small. The results described in this paper
point lie in the same half-plane, the force amplitude associ?V€'® obtained by imposing a cutoK on the number of
ated with one of them must be negative. This situation ié.msuccessful_guesses._Ifthe cutoff was reached for a particu-
depicted in Fig. &). The thin line in the figure indicates a 2" Cell the direct solution for that cell was used.

negative amplitude. Any solution of Eq&)—(9) can be de- A final issue that must be addressed is how the gravita-
picted as a network of force rays within the cell. An exampletional force is to be distributed in the direct solution. Some

involving a negative amplitude is shown in FigcB care must be taken _here to a\{oid generating more and more
It is possible for negative amplitudes to be an artifact ofce!lS for which the direct solution must be used. The choice

the summing of two forces that occur at different positions™2de for the simulations described in this paper is that the

on the same edge, as would arise for the configuration showfPntributions due to the weight of the cell are

in Fig. 2(c). There exist configurations, however, for which

the negative amplitude can only be interpreted as corre- ny=y2mgu/(1+u)(1+ay), (17)
sponding to a real tensile force. An example is shown in Fig.

3(c). The forces applied to the upper edges of the cell result np=2mg/(1+ u)(1+ay), (18
in no force being transmitted across edfeThe force trans-

mitted across edgé balances both the forces and net torque Ci=aihg, (19

produces by the forces above. There is no way to produce the
configuration shown in a material that does not support ten- Co=anNn,, (20)
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t;=Cu, (21) 4

t2:C21 (22)

S G PR L

wherea, anda, are each random numbers between 0.1 and
0.5, and u=(N;+T,+mg/2)/(N,+T,+mg/\2). With

this choice, the portion of the weight transmitted to the right ~ 2< 5|
(or left) increases when the cell is being pushed to the right i *
(or left) from above. This is meant only to be plausible. It
enters the computation of the stresses only when the direct
solution is used, which can be made to occur as infrequently

as desired by raising the value of the cutkff

© X =79.5, ac-model .
AX =395

0X=19.5

——-—- Janssen solution 1
—— X =79.5, g-model

D. Boundary conditions 5 10 15
y/X

The two sections below discuss the configurations gener-
ated “”deT different sets of boundary <_:0nd|t|0ns. In Sec. ”_’ FIG. 4. Average vertical force on a layer in the silo geometry.
the focus is on the average stresses in a deep, narrow SllI‘?ua discrete symbols are obtained from simulation ofdhmodel.
geometry, where walls cafand d9 support ,Stresses', The (See the text for specification of parametethe thick dashed line
model then assumes the geometry shown in Fg) W_'th is a fit to the Janssen solution, with one free parameter chosen to
the shaded cells assumed to absorb all forces applied froRach the asymptotic value of the force at large depths. The thin

above. The force and couple amplitudes on the dashed edggse shows the behavior of themodel with a uniform distribution
are taken to vanish identically. While there is no attempt toof ¢'s.

model the elasticity of the walls in a realistic way, significant

differences between ther model and theq model will  Nevertheless, the deviations, which are of the order of 15%

arise, leading to some useful insights. from wall to centerline, do not alter the fundamental result
In Sec. lll, the goal is to explore the asymptotic behaviorthat oyy/R is a function ofy/R only.

of the stresses in an infinitely wide and deep system. For this The behavior of theg model in this geometry is quite

purpose periodic boundary conditions are employed in thejifferent. An ensemble average of configurations generated

horizontal direction. The two shaded cells in a layer in Fig.py the g model yields a parabolic profile for the vertical

1(a) are identified and all cells are treated equivalently. Theforces supported. At large depths a steady state is attained in

width of the system is always taken large enough so that th@hich the vertical stress near the wall must be proportional

maximal force observed on any cell is small compared to theg the radiusR of the silo since the vertical force transmitted

total force on its layer. to the walls at each layer must equal the weight of the layer
on average. The stress at the centerline, on the other hand, is
Il. AVERAGE STRESSES AND FLUCTUATIONS proportional toR?. This behavior is accurately reproduced
IN A NARROW SILO by an analytic calculation of the distribution of forces in the

model when allg’s are assigned their mean value of 1/2.

| terial t that th terial satisfies th e analytic solution also indicates that the approach to the
granuiar material 1o assume that the material safisties gsymptotic profile occurs more slowly, with a decay constant
Mohr-Coulomb criterion everywhere in space. Denoting the

incipal st o the Mohr-Coulomb criterion O the order of 1R? rather than R [7].
Princips; STEsses as, anday, the Mohr=-ollomb criterion Experimental results appear to confirm the scaling expec-
in two dimensions reads

tations of the classical analysis. The recent experiments of

Clementet al, for example, show a linear scaling with sys-
=sing, (23)  tem width in both the asymptotic average vertical stress and
o171 02 the characteristic depth of the approach to the asymptotic
value[11].

Results for the average vertical force as a function of
depth in thea model are shown in Fig. 4. Figure 4 shows
data for three different silo widths, plotted in terms of the
5caled variables suggested by the classical analysis. The av-
rlesrage vertical forcd-, is here defined as the total vertical
force transmitted across the corrugated surface marked with
a thick line in Fig. 1a), divided by the number of cells in the

One classical approach to the computation of stresses in

01702

where ¢ is the internal friction angle characteristic of the
material. A typical assumption for the boundary condition at
the walls is o, =tan(¢y)oyx, Where ¢,, is a parameter
characterizing the friction between the material and the wall

Under these assumptions, the stress equilibrium equatio
can be solved numerically®]. The centerline stress,, at
depthy is well fit by the solution of Janssdwhich relies on
additional simplifying assumptions

surfaceX:
Rpg a
_ _ ~ay/R 1
Tyy™ " (1—e?™), (24) E — (N +t+n,+ty)
layer \/E
with k=tan(,)(1+sing)/(1—sing). The Janssen solution F,= X (25

assumes thabr,, is independent of horizontal position,
which does not turn out to be true in the full solutigh9]. Note thatR=Xr2. From Eqgs(1) and(2) the value of this
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guantity in the Janssen solution can be calculated. Accoun
ing properly for the density of the materiak=m/(2r)2 and
using they=jr y2, where the integej indexes the layers,
we find

F, 1 R
72;(1—9 1%y, (26)

wherek is the combination of material and wall parameters
defined above.
Each data point in Fig. 4 was obtained by averadig
over 1000 configurations. In all cases, the cutofivas taken
to be 1000, resulting in the direct solution being used for
approximately 3% of the cells. The data collapse obtainet
using the scaling suggested by the Janssen solution is qui
good. The heavy dashed curve in Fig. 4 is the classical pre
diction of Eq.(26), where the single parametathas been fit
to the asymptotic value d¥, at large depths. The same value
of k=2.15 was used for all data sets and ¥evas taken to
be the average number of cells in two successive layers, ne 7 ¢
including the wall cells. It is perhaps worth noting that data
from an experiment by Chaent et al. show the same ten-
dency to lie above the Janssen curve at small defdthk ,
The solid line in Fig. 4 is the prediction from the simplest ¥ %
version of theq model, in which the distribution off’s is 3
taken to be uniform over the unit interval, shown here for &
X=239.5. The line shown was generated by simulation of the # £#
g model, but agrees perfectly with the analytic solutj@h
In that solutionF, scales at large depths lik€ and there is
no value of x that yields a satisfactory fit to the Janssen
solution. FIG. 5. Typical configurations in the silo geometry. Darker cells
Itis clear that the inclusion of the proper force and torqueindicate higher values of the vertical force supported. The bar indi-
balance constraints brings the model into much closer cates how the colors are specified on a linear scale. The width of the
agreement with conventional expectations thanghmodel.  silo is X=39.5.(Excluding the walls, there are 39 cells in each odd
The reason for this appears to be that in thenodel strong layer and 40 in each even onéa) The a model.(b) The g model.
stresses tend to propagate to the left or right with increasing
depth, whereas in thg model the vertical force simply dif- therefore cannot bear any weight. Allowirsgy and a, to
fuses. Figure 5 illustrates this difference with pictures of ver-vary between 0.1 and 0.5 but still employing the direct solu-
tical force patterns obtained from both models ¥or: 39.5.  tion for every cell causes the walls to bear only a small
The @ model clearly exhibits arching on the macroscopicfraction of the weight of each layer.
level. The weight of the material is supported by the walls in  This shows that the behavior illustrated in Fig. 4 results
the manner expected from continuum theories. It is alsalirectly from the randomness in the choice of solutions, not
worth noting that thex model exhibits well-formed arches from the structure of thect lattice and the “hyperbolic”
on the “microscopic” level, an effect that will be illustrated method alone. No constitutive relation similar or even analo-
more clearly below. In addition, the filamentary stress chaingjous to the Mohr-Coulomb condition of incipient yield has
observed in ther model are roughly reminiscent of experi- been put into the model, which makes the fact that the results
mental images produced under a variety of conditiGe, agree reasonably well with the classical theory quite intrigu-
for example, Refs[4,5]) and also with numerical solutions ing.
of stresses in random disk packind®]. Though a quanti-
tative comparison Wi_th these_experiments and models is b_e- Ill. FLUCTUATIONS IN A LARGE, PERIODIC BOX
yond the scope of this work, it does appear that the model is
capable of displaying plausible behavior at both the micro- One of the primary motivations for developing the
scopic and macroscopic levels. model is to see whether the predictions of thenodel sur-
Finally, it is instructive to consider the model in the vive the inclusion of physically realistic force and torque
absence of any randomnessalf anda, are set to 0.5 and balance constraints. Three questions are of particular impor-
the direct solution is employed for every cell, the modeltance.(i) Does the probability distribution for stresses in an
generates a smooth stress field in which the walls suppofitfinitely wide system approach a stationary limit at large
almost no weight and the vertical force grows linearly with depths?(ii) If so, does the limiting probability distribution
depth. This may be thought of as the correct result for have the same form as that of tleemodel? (ii) Do the
homogeneous solid with a vanishing Poisson ratio. The vereonstraints induce any long-range spatial correlations in the
tical stress generates no haorizontal force on the walls, whicktresses? As a first step in answering these questions, distri-
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FIG. 6. Probability distributions for vertical forces at various
depths.(a) Comparison of thex model with K=1000 and they
model with both a uniform distribution of's and a distribution
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FIG. 7. Theq distribution generated by the model with K
=1000. Each data point represents the relative probability that the
g of a given cell will fall in a bin of width 0.001 and the plot is
normalized to correspond t9(q) as defined in the Appendix. The
large circles mark the values for the bins centered on 0.0005 and
0.9995. The inset shows an expanded view of the singularity near
g=0. There is no measurabl&function contribution ag=0 or
q=1.

at 0 and 1;,q was taken to be 0 for 5.5% of the cells, 1 for
5.5%, and uniformly distributed between 0 and 1 for the rest.
The percentages were chosen in order to produed.3, as
determined by the mean-field calculation described in the
Appendix. For comparison, Fig. 7 shows the probability den-
sity for the values ofy obtained in thew model, whereg is
defined as the fraction of the vertical component of force on
a cell that is transmitted to one of the cells in the next layer
below, just as in the model. Note that ther model does

that is uniform except for sharp spikes at 0 and 1 accounting foappear to generate singularitiesggt 0 andg=1, but these
11% of the total density. The data are from the layer at depth 450are not & functions.

The dashed lines are guides to the eye, with slop@sand—1.3.
(b) The @ model as in(a), but with data shown for several different
depths. The inset shows the region near 0, where a clear evo-
lution of P(w) with depth is observed.

Figure 8 compares a measure of the spatial correlations in
the « model and theq model. The correlation function
(W;wi_ )¢ is plotted, where indexes the horizontal position
of a cell in a single layer. Though there is a discernible
difference between the two models, it is clear that correla-

butions of the vertical forces were computed for a system ofions decay rapidly, on the order of ten cells. It may be ar-

width 500 at depths up to 450. The cutéffwas taken to be

1000, requiring direct solutions for approximately 3% of themodel

cells.
Figure 6 showd(w), the probability density for the ver-

gued that theq model predictions should apply to the

at largew since the force and torque balance con-
straints do not appear to generate any long-range correla-
tions. Though there is as yet no analytic proof that the

tical force supported by a single cell at various depths. The

weight w is defined as the actual force supported; «t;
+n,+1t,)/2), divided by the depth of the layer. Figuré&p

showsP(w) for the deepest layer measured, along with the

analytic result for the& model with a uniform distribution of
g's between 0 and 1 that decays as exp{) at largew [6].

In the o model, it appears thatP(w) decays as
exp(—Aw) for largew with X roughly equal to 1.3, as shown

in Fig. (6)a. The dashed lines on the figure are guides to the 3

eye, having slopes-2 and—1.3. Figure ©b) indicates that
there is a noticeable evolution &(w) up to depths as large
as 400, with the decay at large becoming slower and the

number of cells supporting almost no weight increasing with

depth.
The value of\ obtained in thew model can also be ob-
tained from theq model with a suitable choice for the dis-

0.2 . .
* * a-model, K=1000
~ 0.1 O q-model, 11% 0 or 1
/§\~ % * o-model, k=3
X 0.0 - Q @@@@@@@®®@®®®®®®®®®®®®@_
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FIG. 8. Correlations between weights on cells in one layer. The
averaging was done over all cells at depth 200 in 9000 configura-

30

tribution from which theq’s are chosen. The open triangles tions. Data are shown for the model withK = 1000 andk =3 and

in Fig. 6(a) were obtained from simulation of thg mod-
el using a distribution of’s that includeds-function peaks

the g model with aq distribution that is uniform except fob
functions at 0 and 1 accounting for 11% of the total density.
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model weight distribution will indeed conform to the ex- Vertical forces
pected decay rate at very large the calculation in the Ap- e W NEPAPRES Y

pendix showing that this is the behavior expected in dhe
model for an appropriately chosen distribution, together
with the fact that theq distribution obtained from thex N
model is reasonably well approximated by a singular distri- g
bution of this type, strongly suggests the conclusion that the &
exponential decay with~ 1.3 will persist to arbitrarily large
w. It must be noted, however, that the numerical data for the
g model appear to correspond to a slightly larger value of
\. This may be due either to the influence of correlations no
taken into account in the mean-field calculation or possibly E
to the fact that the asymptotic decay rate emerges only fa
largerw or larger depths than were accessed in the simula =
tions of Fig. 6 Thus it is difficult to extract a more accurate . 3§
value of A for the @ model from the data available at & 3¢~
present. 5
The maximally randomized model produces behavior
more closely approximated by thee model with 11% O0's
and 1's than by the maximally randomizgdnodel. Indeed,

well as single-site weight distributions. It is interesting to
note that Radjagt al.reported an exponential decayRgw)
with A = 1.4 in numerical solutions for the stresses in 2D disk == =
packings in squares of side length30 disk diameters sub-
jected to large external loadirig.2], not far from the value
predicted by thea model. In three dimensions, a similar
singular g distribution was also found to agree best with
dynamical simulations of spherical graif@. It is also worth
emphasizing that in both the model and the model with
an appropriate-distribution, there is significant evolution of
P(w) for depths up to 450, even for small valuesvof

As shown above for the silo geometry, themodel does
provide a plausible picture of the macroscopic stress field ™
Unlike continuum theories, however, taemodel can also Horizontal forces

provide details on the scale of the grain size. Figure 9 shows
a typical portion of a configuration at large depth for the FIG. 9. Microscopic arching in the model.(a) Vertical forces

model. Both the vertical and horizontal forces applied tosupported by individual cells in thee model with K=1000.
each cell from above are shown. These images reveal th&arker cells support larger vertical forces. The picture shown is a
weight is supported by a network of arches with thickness orletail of a larger configuration, corresponding to a section the low-
the order of the grain size. The appearance of such structur€§most 70 layers in a system 240 layers deep. A clear central arch
in a random model of this type is a nontrivial observation, a@n be seen, together with several smaller arcttgsHorizontal
different ways of choosingd, 1, @) can lead to substan- forces in the same region #a). quker cells are belng pushed to
tially thicker chains and even nearly uniform distributions. "€ 1€ft by cells above them and lighter ones to the right. The arch
Finally, a remark on the effect of changikgis in order. apparent in(a) is seen here to have the expected structure of hori-
ChangingK to 100 in thew model generates direct solutions zontal forces.
at 16% of the cells, but has little effect on the results de-
scribed above. Changinl to order 1, however, creates a choices of a few parameters that influence the details of the
marked increase in the lengths and directions of the stregdistributions. The latter category of choices has to do with
chains. A visual comparison of configurations obtained withthe distribution of mass within each ceflhe parameters
K set to 1 or 1000 is shown in Fig. 10. u,mg), the precise form of the direct solution used when
random attempts fail, and the assumption that all force inci-
dent on the wall cells is simply absorbed. Variations in how
these choices are made might be expected to correspond to
Thenct lattice is rich enough to describe the stress fielddifferent choices for classical parameters such as the wall-
in any material, with the scale of the cell size being com-material friction angle and the internal friction angle, which
pletely arbitrary. For the case of noncohesive granular matewould be reflected in the value @f.
rials with the cell size equated with the average grain size, Another parameter that can have a noticeable influence on
however, simplifying assumptions can be made that lead tthe force configurations is the cutoff that roughly deter-
nontrivial predictions. mines how often the direct solution must be used. WKesa
The @ model studied in this paper includes particular small, the direct solution is used often and the details of how

CONCLUSIONS
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case of a free-standing pile. The boundary condition at the
K=1000 bottom of the pile(the stiffness of the supporting substrate,
_ : for example is known to be important in determining the

8 PO SN 0% % Sae ' stress field[13]. From the perspective taken in the current

i f’_) S 7 AR R o B work, the question posed by the influence of the boundary
3 ANY Y %0 conditions is how the boundary conditions affect the distri-
NV IR SRR RS £ bution of &’s. Investigation of this issue might be possible if

] A SR AR A restriction(iii) can be discarded and an algorithm developed

E%d VAR A P FA Y R R for finding solutions consistent with appropriate boundary

;i & P R RRES e s BB A conditions on all sides of the lattice, including the bottom. In

g b RSP RS any case, thex model is designed primarily to lend insight
LS ; into microscopic and macroscopic fluctuations, not to inves-
tigate the details of how boundary conditions affect the av-
erage stress field.

The solutions obtained from the model as constituted
in this paper are sufficiently compatible with experiments on

B R AR ¥ A ¥ 3 average stressé¢§l] and fluctuation$14,15 to warrant fur-

LY EE { DR S LN FARRAN TS g ther study. Thex model allows study of the qualitative fea-

H 3 ; S { tures of the stresses at the grain size scale under the simplest
physically consistent assumptions for the form of the geo-
metric disorder. The effect of the disorder is taken to permit
all possible solutions of the local force and torque balance
equations with uniform probability in the solution space pa-
rametrized byag, a4, and «,. Further work is needed to
determine the sensitivity of the results to changes in the
probability measure on this space.

From the data presented in this paper, it appears that the
2D « model predicts a weight distribution that decays as
exp(—1.3w), consistent withg model predictions if and only
if an appropriate singular distribution gfs is used. For such
a q distribution, theq model also yields spatial correlations
similar to thea model. This may be taken both as an indi-
cation that the primary influence of the torque and horizontal
force balance constraints is to select a particular form for the
probability with which vertical force is transmitted between
adjacent sites and as a justification of the use ofgttmeod-
el for understanding the basic structure of the stress fluctua-
tions.

In the silo geometry, thex model achieves a possibly
unexpected measure of success that is not obtainable by ad-
FIG. 10. Comparison of the: model with large and smak.  justing parameters in the model. The form of the average

The vertical force on each cell is shown for periodic boundarystresses generated by taemodel agrees rather well with
conditions. At each layer the force is normalized by the layer depthexperimentg11]. This type of behavior arises also from the
(@) K=1000, resulting in use of the direct solution for 3% of the Mohr-Coulomb constitutive relation, which assumes that the
cells.(b) K=1, resulting in use of the direct solution for 80% of the material is at incipient yield everywhere. Thanodel makes
cells. the rather different assumption that on the scale of the grain
size the stress is as random as it can be without violating the
it is implemented can be important. For lare however, fundamental conditions of stress equilibrium. The fact that
the direct solution is used only in situations where the rangehis “works” suggests a conceptually different approach to
of possible solutions is highly restricted anyway, so that allthe description of stress configurations in granular materials.
possible choices are actually quite close to the direct solu- Another intriguing connection of the model to recent
tion. For this reason, the configurations generated With work involves the explicit description of torques at the
=1000 are excellent approximations to the maximally ran-granular level. Experimental studies of the thickness of shear
domizeda model. bands and also recent work on continuum models that in-

The present version of the model includes an assumptiopnlude the dynamics of a field that characterizes the local
that permits configurations to be generated by propagatingptation of the material, known as Cosserat continuum mod-
forces down from the toprestriction(iii )]. This assumption els, have shown that shear bands tend to have characteristic
is not rigorously justifiable and may well be expected to fail widths on the order of 10—20 grain diamet¢i$,17. The
in situations where strain effects are important. Savage hasccurrence of a similar length scaleanmodel correlations
emphasized the importance of such effects, especially in theuggests that the two approaches may be linked in a more
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profound way than has yet been understood. Let P(s) be the Laplace transform of the steady-state

Generalization of thenct lattice anda model to three weight distributionP(w) at large depthsﬁ(s) satisfies Eq.

dimensions is straightforward but requires a substantiall3(2 11 of Ref. [6], reproduced here for the case of two di-
larger number of variables per cell. Using a face-centereds o &ione on.ly' ’

cubic lattice oriented with the 111 axis on the vertical, one
finds that there are 18 variables that must be computed for -
each cell. For each of the three downward-facing faces, one P(s)=
must find a normal force, two components of the tangential

force, two components of the couplebout the two axes that . L ” . —
lie in the plane of the fadeassociated with the normal force, N @ddition, normalization conditions imply th&(0)=1
and a third “torsional” couplgabout the axis perpendicular andP(s)—1—s ass—0. Substituting the desired form of
to the face determined by the spatial distribution of the tan- yields
gential forces. The generalizations of E¢8), (7), and (9) 0 . )
provide six constraints, one for each component of force and Srev_| 2 5 _ =
torque. The resulting 12-dimensional space of possible solu- P(s) 2[l+ PS)]+(1-6) fo da P(sq)} '
tions can be parametrized by siXs relating the normal (A3)
couples to the normal forces, three more analogous terghe

of the 2D model, and the three torsional couples. The higiDefining R(s) = \/'5 and changing variables in the integral,
dimension of the solution space for a single cell makes thgve have

random guessing approach rather inefficient and statistically
significant data have not yet been obtained.

2

1 ~
Jodq 7(Q)P(sq) | . (A2)

R(s)= g[1+’§2(s)]+(1— e)%f:dx R(x). (A4)
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which can be solved fos in terms ofR, yielding
APPENDIX: MEAN-FIELD CALCULATION OF A\
FOR THE q MODEL B-1
. . _ bs= = , (A6)
Coppersmithet al. have derived several important results [0+ (6—2)R](2H 020

concerning the behavior d¥(w) at largew in the g model

for various choices of the distribution gfs [6]. Definen(q)  whereb is a constant of integration. Note that the normal-
as the probability that a given bond between cells will carryjzation conditions orP imply R=1-s/2 in the vicinity of

a fractionq of the vertical force exerted by the higher cell. ¢_ Substituting this form folR in Eq. (A6), expanding

Coppersmithet al. show thatP(w) decays as exp{AW)  ahouts=0 on the right-hand side, and equating coefficients
with =2 in two dimensions for any(q) that has no sin- ¢ the first-order term yields

gular contributions atj=0 (or q=1). They also show, how-

ever, that different values of can be obtained if such sin- 1

gularities are present. b=3(20- 2)~(2roNz=0), (A7)
This appendix extends their mean-field calculations to the

case of distributions of the form The inverse Laplace transform &f(s) will be propor-

tional to exp&w) at largew, with sy being the largest value
0 of s for which P(s) has a singularity, which occurs wherever
n(@)=3[o(@)+aq-1)]+(1-6) (A1) R(s) either has a pole or is of the formt (s—s,)” with the
constantc#0 and the exponent being nonintegral(lf ¢
=0, then half-integrab also does not yield a singularity in
in two dimensions, for which analytic results are obtainableR2) Although Eq.(A6) cannot be inverted to obtaiﬁ(s)
The term “mean field” here refers to the fact that all corre- explicitly, the position of the singularity iﬁ(s) can be de-

lations between Weight§ on adjac_ent sites are negl_ected. I_t Srmined. First note that for96<1 Eq. (A6) implies that
known that the mean-field result is exact for certain speci . o - =
(s) can diverge only as=0; since the coefficient oR in

istributions, including the uniform one, and also that ev . . .
distribu ' g the uniform one, and ever he denominator has magnitude greater than unity and the

in cases where it is not exactly correct, the deviations from Iex onent is areater than one. the denominator Must arow in
are small for large vertical forces. The calculation utilizes the P ) 9 ’ 9

Laplace transform formalism described in Secs. Il D of Ref.magnitude faster than the numerator|B$ goes to infinity.
[6]. Several results obtained there will be quoted here withThe possible divergence st 0 arises only because we mul-

out explicit derivation. tiplied by s to obtain Eq.(A5). (As mentioned aboveR is
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known to approach 1 a&=0. Next note thadR/ds must Moreover,sy approaches-2 asé approaches 1, indicating a
smooth convergence to the result derived for the uniform

diverge at any value af for which R= 1/, and only atthose  gisrintion. (The case off=0 must be treated separately,
points, as is evident from E@A5) and the fact thaR itself however, and it is seen thit develops a pole at 2.) Fi-
does not diverge. Finally, repeated differentiation of Eq. mally, the exponent at the singularity may be obtained from
(A5) reveals that higher derivatives & cannot diverge at limz_ 1,,IN(PRIAD)/IN(ARAY =(v—2)/(v—1), which yields
any point where the first derivative does not diverge. Thu -
the singularity inR can be located by settinig=1/6 in Eq.
(A6) and combining with Eq(A7) to determines. The result

is that the singularity occurs at

=1/2. Thus there is a single singularity R(s) and in the

V|C|n|ty of the singularity we haveR=(1/6)+ \(s—sq),
with s, given above. This result is consistent with the claim

in Ref. [6] that P(s) has a square-root singularity for any
7(q) having as-function component af=0.

In order to compare to the numerical results for e
model, it is useful to find the value of that produces a
s approaches 0 a8 approaches 0, which may be expecteddecay with A=1.3. From Eg. (A8) one sees thats,
given that=0 corresponds to the critical distribution for ~—1.30... isproduced byd=0.11, which is the reason
which theq model exhibits power-law decay iB(w) [6].  that this value was chosen for plotting in Figs. 6 and 8.

1 (2+0)1(2—6)

7 (A8)

( 20
2+6

30:2< 1-
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