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Average stresses and force fluctuations in noncohesive granular materials

Joshua E. S. Socolar
Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708

~Received 2 October 1997!

A lattice model is presented for investigating the fluctuations in static granular materials under gravitation-
ally induced stress. The model is similar in spirit to the scalarq model of Coppersmithet al. @Phys. Rev. E53,
4673 ~1996!#, but ensures balance of all components of forces and torques at each site. The geometric ran-
domness in real granular materials is modeled by choosing random variables at each site, consistent with the
assumption of cohesionless grains. Configurations of the model can be generated rapidly, allowing the statis-
tical study of relatively large systems. For a two-dimensional~2D! system with rough walls, the model
generates configurations consistent with continuum theories for the average stresses~unlike the q model!
without requiring the assumption of a constitutive relation. For a 2D system with periodic boundary conditions,
the model generates single-grain force distributions similar to those obtained from theq model with a singular
distribution ofq’s. @S1063-651X~98!05203-9#

PACS number~s!: 81.05.Rm, 62.40.1i, 02.50.Ey
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INTRODUCTION

The microscopic stress field in a static granular mate
has an extraordinarily complex structure. Viewed from t
perspective of standard elasticity theory, the geometric
order in the packing of grains gives rise to extremely co
plicated boundary conditions on the stress equilibrium eq
tions. In general, this disorder is rather difficult
characterize statistically and may even exhibit nontrivial c
relations induced by the dynamical history of the materia

At present, the overwhelming majority of attempts
model granular materials are formulated at the level o
continuous stress field, which is intended to represen
smoothed version of actual stresses, averaged over reg
large compared to the grain size. In order to close the sys
of stress equilibrium equations, a constitutive relation m
be assumed, such as the Mohr-Coulomb condition that
material is on the verge of yielding at everywhere within
plastic zone. While this condition@1# and others like it@2,3#
have met with some success in many different situatio
they rest ultimately onad hocassumptions about the conne
tion between the microscopic and macroscopic stresses.

One factor that could in principle pose fundamental di
culties for continuum theories for the average stress is
fluctuations in the microscopic stresses may be quite la
perhaps large enough to invalidate typical assumptions a
the scales over which the material can be modeled as a
tinuum. In several recent experiments that directly image
stress field, stress chains~filamentary configurations o
strongly stressed grains! have been observed with correlatio
lengths that are apparently limited only by the system s
~though the systems have not been much larger than 30 g
diameters in the relevant dimension! @4,5#. For these reason
it is important to obtain some theoretical understanding
what determines the size and spatial structure of the fluc
tions.

Coppersmithet al. recently stimulated interest in a sim
plified statistical approach to stresses in granular mate
with the introduction of the ‘‘q model,’’ a lattice model
whose configurations are intended to represent the wa
571063-651X/98/57~3!/3204~12!/$15.00
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which vertical forces are supported in a noncohesive m
rial. In such a model it is possible for very large fluctuatio
to arise, even on scales as small as a lattice constant.
constitutive assumptions of continuum models are repla
here by an ansatz concerning the form of the microsco
effects of geometric disorder in the material. The central
sult of Ref.@6# is that for infinitely wide layers~or materials
subject to periodic boundary conditions in the horizontal
rections!, fluctuations in the vertical forces supported b
grains at a given depth are of the same magnitude as
average force supported at that depth. An elegant calcula
shows that the probability distribution for the vertical forc
supported by a grain deep in the pile has an exponential
rather than Gaussian@6#.

For all its merits, theq model has three serious flaw
First, it takes no account of the constraints imposed by h
zontal force balance and torque balance on each grain
thus does not contain the proper conservation laws at
microscopic level. This may constitute a flaw that leads
incorrect predictions, though it is also possible that the c
straints in question do not affect the large-scale behav
Second, when studied in the silo geometry, theq model
yields predictions for the average stresses that dramatic
disagree with classical theories and experiments@7#. While
quantitative agreement may not be expected given the c
representation of the boundary conditions that must be u
in constructingq model configurations, the qualitative dis
crepancy is striking, as explained below. Finally, there is
clear procedure for connecting the lattice constant in thq
model to a physical length scale.

In this paper, a model is presented that explicitly incorp
rates the relevant force and torque balance constraints
the lattice approach of theq model and provides a natura
connection between the lattice constant and the grain s
Stress distributions are then computed for the silo geom
with force-bearing walls and with periodic boundary cond
tions. It is shown that the present model gives much be
agreement with previous theories and experiments in the
geometry and thus appears to be a more reliable basis
investigating the subtleties of the stress fluctuations. Num
3204 © 1998 The American Physical Society
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cal results are then presented for the single-grain weight
tribution from the model at large depths. The single-gr
weight distributions are similar in form to those obtained
theq model and therefore may be thought of as providin
firmer foundation for theq model predictions.

It is useful to make a conceptual distinction between
definition of the basic lattice with appropriate variables d
fined on it and the assumptions about those variables tha
relevant for the study of noncohesive granular materials.
geometric structure of the model is a square lattice with v
ables representing net normal forces, couples, and tange
forces on each edge. This structure will be referred to as
‘‘ nct lattice.’’ Every possible stress field in any type of sta
medium can be mapped to a configuration on thenct lattice.
~The mapping is many to one.! In order to model a nonco
hesive granular material, several restrictions must be m
on the values of the normal forces, couples, and tange
forces at each edge and an ansatz must be made for for
the disorder in the system. A particular model that incorp
rates these restrictions will be called the ‘‘a model,’’ for
reasons that will become apparent below.

The paper is organized as follows. In Sec. II thea mod-
el is defined for two-dimensional~2D! systems and the con
nections of the model parameters to physical parameters
constraints are discussed. In Sec. II results are presente
the case of narrow silos with rough walls in two dimensio
and contrasted with results obtained from theq model. In
Sec. III results are presented for the case of wide 2D syst
with periodic boundary conditions. The final section includ
a discussion of some general issues and the generalizati
the a model to three dimensions.

I. THE a MODEL IN TWO DIMENSIONS

A. The nct lattice

Consider an arbitrary~possibly highly inhomogeneous!
material that is known to be in static stress equilibrium. F
present purposes, the material is taken to be two dimensi
and the following lattice representation of the stress field
defined.~See Fig. 1.!

A square lattice is constructed, with each cell represen
a portion of the material. The length of each cell edge isr .
A horizontal row of cells sharing vertices, such as tho
marked with a dot in Fig. 1, will be called a ‘‘layer’’ of cells
Cell i j is defined as thei th cell from the left in thej th layer
from the top, with the left edge being defined as shown
Fig. 1 for even or oddj . Note that j increases downward
which is also defined as the positivey direction.

Associated with each edge in the lattice are a norm
force, a tangential force, and a couple. Taken together, th
three quantities fully determine the force and torque exe
on one cell about its center by the other cell sharing t
edge. The couple is necessary to represent the torque tha
be applied to a cell even in the absence of tangential for
due to the manner in which the normal force is distribu
along the edge. The couple is here defined so that it doesnot
include the contribution of the tangential force to the torq
The contribution from tangential forces is just equal tor
times the net amplitude of the tangential force, regardles
how that force is distributed along the edge.
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Denote the amplitudes of the normal forces on the fo
edges of celli j by N1

( i , j ) , N2
( i , j ) , n1

( i , j ) , and n2
( i , j ) ; the

couples byC1
( i , j )r , C2

( i , j )r , c1
( i , j )r , andc2

( i , j )r ; and the tangen-
tial force amplitudes byT1

( i , j ) , T2
( i , j ) , t1

( i , j ) , and t2
( i , j ) , as

shown in Fig. 1~b!. We will drop the superscript wheneve
this leads to no ambiguity. BothN andn refer to the ampli-
tude of the net compressive force between the cells sha
an edge: Negative values would indicate a net tensile fo
between them. The sign convention for tangential forces
chosen such that positiveT or t always indicates a positive
downward component of the force exertedby the cell with a
higher centeron the lower one. The sign convention for th
couples is that the directions indicated in Fig. 1~b! corre-
spond to positive values of each of theci ’s and Ci ’s. This
choice allows the right-left symmetry of the model to b
immediately evident in the equations below. Note that
uppercase variables associated with a given cell are ide
cally equal to the lowercase variables for the cell sharing
relevant edge. For example,N1

( i , j )5n1
( i , j 21) ~or n1

( i 21,j 21))
for j even~or odd!.

In terms of the canonically defined@8# microscopic stress
tensors(r ), these forces and couples can be written as in
grals over their respective edges. For example, lettinge1 and
e2 be unit vectors in they2x andy1x directions, as shown
in Fig. 1~b!, and lettings run from 2r to r along the edge:

N152E
2r

r

ds e1•s~s!•e1 , ~1!

T152E
2r

r

ds e2•s~s!•e1 , ~2!

FIG. 1. Definition of thea model.~a! The lattice of square cells
Shaded cells represent walls for the silo geometry and identi
cells for periodic boundary conditions. Dashed edges are assu
to transmit no force in the silo geometry. The cells marked with
large dot constitute a single layer. The thick edges are use
compute the force on a layer to compare with the Janssen solu
~b! The variables used to describe the stress in a single cell and
unit vectors defining directions mentioned in the text.
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C152
1

r E2r

r

ds se1•s~s!•e1, ~3!

where the integrals are over surfaces~lines in two dimen-
sions! that may cut through grains and/or contacts betw
grains.

Static equilibrium at the microscopic level requires@8#

]ks ik2rgi50, ~4!

wherer is the local density andg is the gravitational accel
eration. Requiring that the total force on a cell vanish, o
finds

R s ikdSk5mgi , ~5!

wherem5*r dV is the mass of the material in the cell an
dSk is thekth component of the outward normal to surfa
elementS. Takingg to be in the positivey direction~down-
ward! and performing the integral over the entire cell, thex
and y components of Eq.~5! yield the following equations
for vertical and horizontal force balance:

n11t11n21t25N11T11N21T21A2mg, ~6!

n12t12n21t25N12T12N21T2 . ~7!

Similarly, the vanishing of the total torque about the cen
of the cell requires

R dSyx~sxy2syy!1 R dSxy~syx2sxx!2E rgx dV50,

~8!

which leads to

t12c12t21c252T12C11T21C212u, ~9!

where 2u5(A2/r )*dV rgx. ~A torque about the center o
the cell may be exerted by gravity because the center of m
of the material in the cell need not coincide with the geom
ric center.!

The lattice and variables just described, together with
fundamental physical force and torque balance constra
constitute thenct lattice. A ‘‘configuration’’ of the lattice
denotes a set of values ofn1

( i , j ) , n2
( i , j ) c1

( i , j ) , c2
( i , j ) , t1

( i , j ) ,
t2
( i , j ) , m( i , j ), andu( i , j ) for all i j that satisfy Eqs.~6!, ~7!, and

~9! for every i j . Each configuration is a discrete represen
tion of a possible stress field and any possible stress
induces a configuration. Thus thenct lattice structure may
be a useful tool for investigating stresses in a wide range
inhomogeneous materials.

B. Definition of the a model

We now turn to the modeling of noncohesive granu
materials on thenct lattice. In the spirit of theq model it is
assumed that a typical stress distribution can be obtaine
propagating the forces from top to bottom on the lattice. T
assumption is made for the sole purpose of allowing
rapid construction of plausible force configurations. In thea
model, configurations are generated by descending thro
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the lattice, solving Eqs.~10!–~13! for each cell. The proces
begins by specifying values ofm andu for each cell andN1,
N2, T1, T2, C1, andC2 for the cells in the top layer.

Given the values of the uppercase variables at a partic
cell, the six lowercase variables must be determined. S
these variables are constrained by Eqs.~6!, ~7!, and~9!, the
space of possible solutions is then three dimensional and
be parametrized by three real numbersa0, a1, anda2. The
manner in which these three numbers are determined at
cell must reflect the physics of the material being modele

It is convenient to make the definitionsc1[a1 n1, c2
[a2 n2, and a0[T21C22t11c11u. The force and
torque balance equations for a single cell can then be wri
as

n11t11n21t25N11T11N21T21A2mg, ~10!

n12t12n21t25N12T12N21T2 , ~11!

t12a1n11a05T21C21u, ~12!

t22a2n21a05T11C12u, ~13!

where the torque equation has been split into two so tha
may be expressed in a symmetric form. Ifm andu are given
for every cell, then the microscopic true stress field induce
unique configuration of triples (a0 ,a1 ,a2) on the lattice.

In a noncohesive granular material consisting of conv
grains, the grains can ‘‘push’’ on each other, but nev
‘‘pull’’; i.e., there can be no tensile forces in the material o
scales larger than the grain size. This feature is incorpora
into the a model by imposing two restrictions:~i! All nor-
mal force amplitudesn1 andn2 must be positive and~ii ! all
a1’s anda2’s must lie in the interval@21,1#. Both restric-
tions are consequences of the assumption that there ar
tensile forces anywhere along the cell edge. The maxi
couple that can be produced by a given normal force am
tude corresponds to the case in which the entire normal fo
is applied at one corner of the cell, in which casea1 ~or a2)
is 61. The assumption is not rigorously valid since there c
be tensile forces in the interior of a grain that is cut by t
edge of a cell. The central hypothesis of thea model, how-
ever, is that the geometric randomness in the grain posit
can be replaced by the randomness in the choice of the
lution for each cell. In this context, restrictions~i! and~ii ! are
valid as long as the cell size is larger than or equal to
grain size.

It is duly noted that the method of propagating forc
down from the top of the system does not faithfully repres
the physics in the following sense. The equations of str
equilibrium are elliptic equations whose solutions depend
the boundary conditions on all of the system’s boundar
For the propagation method employed in thea model, the
only cells that can be affected by a change in the distribut
of forces on a given cell are the ones that lie in a downw
opening cone with 45° edges, and in this respect the mod
more appropriate to a hyperbolic system. The goal he
however, is to construct the simplest model consistent w
the relevant stress balance constraints and capable of dis
ing nontrivial fluctuations. In addition, it should be noted th
the classical approach to the computation of stresses
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Mohr-Coulomb constitutive relations also transforms t
problem into a hyperbolic one and the computational met
of propagating stresses downward from the top is routin
exploited in this context as well@9#. The development of
rigorous elliptic methods for generating consistent confi
rations is an interesting and potentially important problem
well, but is beyond the scope of this work.

The adoption of a hyperbolic method necessarily lead
a third restriction on the force amplitudes:~iii ! All tangential
force amplitudes must be positive. In the absence of
restriction it is impossible to ensure that restriction~i! above
can be met for every cell. That is, if negative tangential a
plitudes are permitted to occur, then it can happen that
some cell deeper in the system all solutions to Eqs.~6!, ~7!,
and~9! have a negative value of eithern1 or n2. On the other
hand, it can be shown, using the method described in S
I C, that restriction~iii ! guarantees a consistent solution f
every cell.

The final assumption defining thea model is that geo-
metric randomness in the structure of a granular material
be effectively modeled by assigning equal probability to
possible solutions to the force and torque balance equat
at each cell. This requires defining a particular measure
the space of solutions. In the absence of any good reaso
choose otherwise, it will be assumed that all values of
triple (a0 ,a1 ,a2) that are consistent with restrictions~i!–
~iii ! above are equally probable. Throughout the rest of
paper it will also be assumed, for simplicity, that all ce
have the samem and thatu50 for every cell.

This concludes the definition of the 2Da model for non-
cohesive granular materials consisting of convex grains. S
tion I C presents a geometric picture of the solution spac
the force and torque balance equations for a single cell.
picture provides useful insight into the need for restricti
~iii ! and also reveals that the cell size in the model mus
interpreted as the grain size.

The q model may be thought of as a rather drastic si
plification of the a model in which Eqs.~7! and ~9! are
ignored. The horizontal components of the forces can the
neglected and it becomes more convenient to work with v
able wi[(ni1t i)/A2 and Wi[(Ni1Ti)/A2. Equation~7!
can then be written as

w15q~W11W21mg!, ~14!

w25~12q!~W11W21mg!. ~15!

In the q model, q at each site is an independent rando
number chosen from some distribution with support only
the interval @0,1#. The lack of correlation betweenq’s at
different sites is an important feature in the asympto
analysis of Coppersmithet al. @6#. Note that thea mod-
el differs from theq model in that the random variables
each cell cannot be chosen in advance, but only after
forces have been propagated down to the cell. If all of thea i
are fixed in advance, negative tangential and normal for
are quickly generated and the amplitudes diverge rap
with increasing depth. Thus the ‘‘maximally random’’a
model does contain correlations that are direct conseque
of the additional force and torque balance constraints. In
sense it is related to attempts to derive force distributions
d
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maximizing a statistical entropy associated with the poss
ways of constructing microscopic configurations consist
with an imposed average stress field@10#, but differs in that
the average stress field in thea model is not given in ad-
vance.

C. Solving the force and torque balance equations
in a single cell

For the purposes of this subsection we will takeg50.
The effects of gravity can be included in a straightforwa
manner once the graphical method is understood.

All of the information contained in the values ofN, C,
andT on one edge can be encoded in a single vector pla
at some position along the edge. The vector itself repres
the sum of the normal and tangential forces and the posi
is chosen such that the torque that would be produced a
the center of the cell by the normal component of the force
equal to C. Thus the net effect of any configuration o
stresses in the cell can be expressed graphically by draw
the four vectors, one on each edge.

Now given the vectors on the upper edges of a cell
would like to determine all the possible ways of assigni
vectors to the lower edges. One solution is immediately
vious and will be called the ‘‘direct solution.’’ Simply con
struct rays originating from the vectors on each edge, t
take the lower vectors to be equal and opposite to the up
vectors and positioned where their respective rays interse
lower edge.~See Fig. 2.! Each ray will be called a ‘‘ray of
force,’’ though it is understood that the stresses represe
are not really concentrated on the ray. The only complicat
that can arise is that both rays of force intersect the sa
lower edge. In this case, the vector assigned to this edg
the sum of the two, positioned such that the couple ass

FIG. 2. Direct solution for a single cell.~a! A straightforward
case in which forces are propagated directly through the cell.~b! A
case in which the propagated force rays intersect the same ed
the cell. The two vector forces must then be summed as show
obtain the solution.
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3208 57JOSHUA E. S. SOCOLAR
ated with it is the sum of the couples associated with the t
~See Fig. 2.! Note that the direct solution is guaranteed
exist if and only if each ray of force is guaranteed to inters
a lower edge rather than exiting the cell through the ot
upper edge. This will be true whenever the normal and t
gential amplitudes on the upper edge are both positive an
directly related to restriction~iii ! above.

To construct solutions different from the direct solutio
note that force and torque balance can be preserved by
ing a ray of force split into two rays at some arbitrary po
in the cell, as shown in Fig. 3~a!. The force associated with
each ray is directed along the ray and the force amplitu
are then fixed by requiring that the three forces sum to z
Torque balance is guaranteed because none of the
forces generates any torque about the splitting point. S
larly, two rays of force that intersect can be merged into
single ray of force emanating from the point of intersectio

Whenever all three rays of force intersecting at a sin
point lie in the same half-plane, the force amplitude asso
ated with one of them must be negative. This situation
depicted in Fig. 3~b!. The thin line in the figure indicates
negative amplitude. Any solution of Eqs.~6!–~9! can be de-
picted as a network of force rays within the cell. An examp
involving a negative amplitude is shown in Fig. 3~c!.

It is possible for negative amplitudes to be an artifact
the summing of two forces that occur at different positio
on the same edge, as would arise for the configuration sh
in Fig. 2~c!. There exist configurations, however, for whic
the negative amplitude can only be interpreted as co
sponding to a real tensile force. An example is shown in F
3~c!. The forces applied to the upper edges of the cell re
in no force being transmitted across edgeE. The force trans-
mitted across edgeF balances both the forces and net torq
produces by the forces above. There is no way to produce
configuration shown in a material that does not support t

FIG. 3. Splitting of force rays and tensile forces within a ce
~a! A vertex involving only positive force amplitudes.~b! A vertex
involving a negative force amplitude.~c! A solution in a cell in-
volving a negative force amplitude. The smaller dashed cells ca
used to argue that real tensile forces must be associated with
configuration.
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sile forces. To see this, consider the description of the c
figuration using cells of smaller scale@the dashed cells in
Fig. 3~c!#. It can be shown that it is impossible to construc
network of force rays on the smaller cells that would
represented by the network shown on the large cell, with
having tensile segments that cross the boundaries of som
the small cells.~The situation corresponds to that of a ho
zontal beam clamped at one end and supporting a load on
other, in which case the top portion of the beam is un
tension.!

Thus, if all possible solutions of the force and torque b
ance equations occur with equal probability, the mate
within a cell must be assumed to support tensile forces
hence must be on the order of or smaller than the grain s
Together with the reasoning leading to restriction~i!, this
leads to the conclusion thatthe cell size in thea model must
be the grain size.

In practice, the region ina-space that yields solutions tha
satisfy restrictions~i!–~iii ! is not easily identified. Restriction
~ii ! immediately implies thata1 anda2 must lie in the inter-
val @21,1#. Using Eqs.~10!–~13! and restrictions~i!–~iii !, it
can also be shown thata0 must lie in the range

2N12N21C11C22A2mg<2a0<N11N21C11C2

12T112T22A2mg.

~16!

Thus the entire region of consistent solutions must be c
tained within a rectangular region ina space. To give equa
weight to every solution consistent with the restrictions
point is selected at random according to a uniform proba
ity density throughout the rectangular box. The values ofn1,
n2, t1, andt2 are then computed from Eqs.~10!–~13!. If any
of these quantities is negative, the solution is discarded
the process is repeated until a consistent solution is fou
Since every point within the rectangular box has an eq
probability of being chosen on every attempt, it follows th
every point that corresponds to a consistent solution has
equal probability of being selected.

In some cases, it may turn out that the set of consis
solutions occupies a very small region of the rectangular
so that the probability of finding a solution by random gue
ing is prohibitively small. The results described in this pap
were obtained by imposing a cutoffK on the number of
unsuccessful guesses. If the cutoff was reached for a par
lar cell, the direct solution for that cell was used.

A final issue that must be addressed is how the grav
tional force is to be distributed in the direct solution. Som
care must be taken here to avoid generating more and m
cells for which the direct solution must be used. The cho
made for the simulations described in this paper is that
contributions due to the weight of the cell are

n15A2mgm/~11m!~11a1!, ~17!

n25A2mg/~11m!~11a2!, ~18!

c15a1n1 , ~19!

c25a2n2 , ~20!

be
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t15c1 , ~21!

t25c2 , ~22!

wherea1 anda2 are each random numbers between 0.1 a
0.5, and m[(N11T21mg/A2)/(N21T11mg/A2). With
this choice, the portion of the weight transmitted to the rig
~or left! increases when the cell is being pushed to the ri
~or left! from above. This is meant only to be plausible.
enters the computation of the stresses only when the d
solution is used, which can be made to occur as infreque
as desired by raising the value of the cutoffK.

D. Boundary conditions

The two sections below discuss the configurations ge
ated under different sets of boundary conditions. In Sec
the focus is on the average stresses in a deep, narrow
geometry, where walls can~and do! support stresses. Th
model then assumes the geometry shown in Fig. 1~a! with
the shaded cells assumed to absorb all forces applied
above. The force and couple amplitudes on the dashed e
are taken to vanish identically. While there is no attempt
model the elasticity of the walls in a realistic way, significa
differences between thea model and theq model will
arise, leading to some useful insights.

In Sec. III, the goal is to explore the asymptotic behav
of the stresses in an infinitely wide and deep system. For
purpose periodic boundary conditions are employed in
horizontal direction. The two shaded cells in a layer in F
1~a! are identified and all cells are treated equivalently. T
width of the system is always taken large enough so that
maximal force observed on any cell is small compared to
total force on its layer.

II. AVERAGE STRESSES AND FLUCTUATIONS
IN A NARROW SILO

One classical approach to the computation of stresses
granular material to assume that the material satisfies
Mohr-Coulomb criterion everywhere in space. Denoting
principal stresses ass1 ands2, the Mohr-Coulomb criterion
in two dimensions reads

s12s2

s11s2
5sinf, ~23!

where f is the internal friction angle characteristic of th
material. A typical assumption for the boundary condition
the walls is sxy5tan(fw)sxx , where fw is a parameter
characterizing the friction between the material and the w

Under these assumptions, the stress equilibrium equat
can be solved numerically@9#. The centerline stresssyy at
depthy is well fit by the solution of Janssen~which relies on
additional simplifying assumptions!

syȳ5
Rrg

k
~12eay/R!, ~24!

with k[tan(fw)(11sinf)/(12sinf). The Janssen solutio
assumes thatsyy is independent of horizontal position
which does not turn out to be true in the full solution@1,9#.
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Nevertheless, the deviations, which are of the order of 1
from wall to centerline, do not alter the fundamental res
that syy /R is a function ofy/R only.

The behavior of theq model in this geometry is quite
different. An ensemble average of configurations genera
by the q model yields a parabolic profile for the vertica
forces supported. At large depths a steady state is attaine
which the vertical stress near the wall must be proportio
to the radiusR of the silo since the vertical force transmitte
to the walls at each layer must equal the weight of the la
on average. The stress at the centerline, on the other han
proportional toR2. This behavior is accurately reproduce
by an analytic calculation of the distribution of forces in th
q model when allq’s are assigned their mean value of 1/
The analytic solution also indicates that the approach to
asymptotic profile occurs more slowly, with a decay const
of the order of 1/R2 rather than 1/R @7#.

Experimental results appear to confirm the scaling exp
tations of the classical analysis. The recent experiment
Clémentet al., for example, show a linear scaling with sy
tem width in both the asymptotic average vertical stress
the characteristic depth of the approach to the asympt
value @11#.

Results for the average vertical force as a function
depth in thea model are shown in Fig. 4. Figure 4 show
data for three different silo widths, plotted in terms of th
scaled variables suggested by the classical analysis. The
erage vertical forceFv is here defined as the total vertic
force transmitted across the corrugated surface marked
a thick line in Fig. 1~a!, divided by the number of cells in the
surfaceX:

Fv5

(
layer

1

A2
~n11t11n21t2!

X
. ~25!

Note thatR5XrA2. From Eqs.~1! and~2! the value of this

FIG. 4. Average vertical force on a layer in the silo geomet
The discrete symbols are obtained from simulation of thea model.
~See the text for specification of parameters.! The thick dashed line
is a fit to the Janssen solution, with one free parameter chose
match the asymptotic value of the force at large depths. The
line shows the behavior of theq model with a uniform distribution
of q’s.
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quantity in the Janssen solution can be calculated. Acco
ing properly for the density of the materialr5m/(2r )2 and
using they5 j r A2, where the integerj indexes the layers
we find

Fv

X
5

1

k
~12e2k j /X!, ~26!

wherek is the combination of material and wall paramete
defined above.

Each data point in Fig. 4 was obtained by averagingFv
over 1000 configurations. In all cases, the cutoffK was taken
to be 1000, resulting in the direct solution being used
approximately 3% of the cells. The data collapse obtain
using the scaling suggested by the Janssen solution is
good. The heavy dashed curve in Fig. 4 is the classical
diction of Eq.~26!, where the single parametera has been fit
to the asymptotic value ofFv at large depths. The same valu
of k52.15 was used for all data sets and theX was taken to
be the average number of cells in two successive layers
including the wall cells. It is perhaps worth noting that da
from an experiment by Cle´ment et al. show the same ten
dency to lie above the Janssen curve at small depths@11#.
The solid line in Fig. 4 is the prediction from the simple
version of theq model, in which the distribution ofq’s is
taken to be uniform over the unit interval, shown here
X539.5. The line shown was generated by simulation of
q model, but agrees perfectly with the analytic solution@7#.
In that solution,Fv scales at large depths likeX2 and there is
no value ofk that yields a satisfactory fit to the Janss
solution.

It is clear that the inclusion of the proper force and torq
balance constraints brings thea model into much closer
agreement with conventional expectations than theq model.
The reason for this appears to be that in thea model strong
stresses tend to propagate to the left or right with increas
depth, whereas in theq model the vertical force simply dif-
fuses. Figure 5 illustrates this difference with pictures of v
tical force patterns obtained from both models forX539.5.

Thea model clearly exhibits arching on the macroscop
level. The weight of the material is supported by the walls
the manner expected from continuum theories. It is a
worth noting that thea model exhibits well-formed arche
on the ‘‘microscopic’’ level, an effect that will be illustrate
more clearly below. In addition, the filamentary stress cha
observed in thea model are roughly reminiscent of exper
mental images produced under a variety of conditions~see,
for example, Refs.@4,5#! and also with numerical solution
of stresses in random disk packings@12#. Though a quanti-
tative comparison with these experiments and models is
yond the scope of this work, it does appear that the mode
capable of displaying plausible behavior at both the mic
scopic and macroscopic levels.

Finally, it is instructive to consider thea model in the
absence of any randomness. Ifa1 anda2 are set to 0.5 and
the direct solution is employed for every cell, the mod
generates a smooth stress field in which the walls sup
almost no weight and the vertical force grows linearly w
depth. This may be thought of as the correct result fo
homogeneous solid with a vanishing Poisson ratio. The v
tical stress generates no horizontal force on the walls, wh
t-
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therefore cannot bear any weight. Allowinga1 and a2 to
vary between 0.1 and 0.5 but still employing the direct sol
tion for every cell causes the walls to bear only a sma
fraction of the weight of each layer.

This shows that the behavior illustrated in Fig. 4 resu
directly from the randomness in the choice of solutions, n
from the structure of thenct lattice and the ‘‘hyperbolic’’
method alone. No constitutive relation similar or even ana
gous to the Mohr-Coulomb condition of incipient yield ha
been put into the model, which makes the fact that the resu
agree reasonably well with the classical theory quite intrig
ing.

III. FLUCTUATIONS IN A LARGE, PERIODIC BOX

One of the primary motivations for developing thea
model is to see whether the predictions of theq model sur-
vive the inclusion of physically realistic force and torqu
balance constraints. Three questions are of particular imp
tance.~i! Does the probability distribution for stresses in a
infinitely wide system approach a stationary limit at larg
depths?~ii ! If so, does the limiting probability distribution
have the same form as that of theq model? ~iii ! Do the
constraints induce any long-range spatial correlations in
stresses? As a first step in answering these questions, di

FIG. 5. Typical configurations in the silo geometry. Darker cel
indicate higher values of the vertical force supported. The bar in
cates how the colors are specified on a linear scale. The width of
silo is X539.5.~Excluding the walls, there are 39 cells in each od
layer and 40 in each even one.! ~a! Thea model.~b! Theq model.
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butions of the vertical forces were computed for a system
width 500 at depths up to 450. The cutoffK was taken to be
1000, requiring direct solutions for approximately 3% of t
cells.

Figure 6 showsP(w), the probability density for the ver
tical force supported by a single cell at various depths. T
weight w is defined as the actual force supported, (n11t1

1n21t2)/A2), divided by the depth of the layer. Figure 6~a!
showsP(w) for the deepest layer measured, along with
analytic result for theq model with a uniform distribution of
q’s between 0 and 1 that decays as exp(22w) at largew @6#.

In the a model, it appears thatP(w) decays as
exp(2lw) for largew with l roughly equal to 1.3, as show
in Fig. ~6!a. The dashed lines on the figure are guides to
eye, having slopes22 and21.3. Figure 6~b! indicates that
there is a noticeable evolution ofP(w) up to depths as large
as 400, with the decay at largew becoming slower and the
number of cells supporting almost no weight increasing w
depth.

The value ofl obtained in thea model can also be ob
tained from theq model with a suitable choice for the dis
tribution from which theq’s are chosen. The open triangle
in Fig. 6~a! were obtained from simulation of theq mod-
el using a distribution ofq’s that includedd-function peaks

FIG. 6. Probability distributions for vertical forces at variou
depths.~a! Comparison of thea model with K51000 and theq
model with both a uniform distribution ofq’s and a distribution
that is uniform except for sharp spikes at 0 and 1 accounting
11% of the total density. The data are from the layer at depth 4
The dashed lines are guides to the eye, with slopes22 and21.3.
~b! Thea model as in~a!, but with data shown for several differen
depths. The inset shows the region nearw50, where a clear evo-
lution of P(w) with depth is observed.
f

e

e
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at 0 and 1;q was taken to be 0 for 5.5% of the cells, 1 fo
5.5%, and uniformly distributed between 0 and 1 for the re
The percentages were chosen in order to producel51.3, as
determined by the mean-field calculation described in
Appendix. For comparison, Fig. 7 shows the probability de
sity for the values ofq obtained in thea model, whereq is
defined as the fraction of the vertical component of force
a cell that is transmitted to one of the cells in the next la
below, just as in theq model. Note that thea model does
appear to generate singularities atq50 andq51, but these
arenot d functions.

Figure 8 compares a measure of the spatial correlation
the a model and theq model. The correlation function
^wiwi 1 j&c is plotted, wherei indexes the horizontal position
of a cell in a single layer. Though there is a discernib
difference between the two models, it is clear that corre
tions decay rapidly, on the order of ten cells. It may be
gued that theq model predictions should apply to thea
model at largew since the force and torque balance co
straints do not appear to generate any long-range corr
tions. Though there is as yet no analytic proof that thea

r
0.

FIG. 7. Theq distribution generated by thea model with K
51000. Each data point represents the relative probability that
q of a given cell will fall in a bin of width 0.001 and the plot is
normalized to correspond toh(q) as defined in the Appendix. The
large circles mark the values for the bins centered on 0.0005
0.9995. The inset shows an expanded view of the singularity n
q50. There is no measurabled-function contribution atq50 or
q51.

FIG. 8. Correlations between weights on cells in one layer. T
averaging was done over all cells at depth 200 in 9000 config
tions. Data are shown for thea model withK51000 andK53 and
the q model with a q distribution that is uniform except ford
functions at 0 and 1 accounting for 11% of the total density.
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model weight distribution will indeed conform to the e
pected decay rate at very largew, the calculation in the Ap-
pendix showing that this is the behavior expected in theq
model for an appropriately chosenq distribution, together
with the fact that theq distribution obtained from thea
model is reasonably well approximated by a singular dis
bution of this type, strongly suggests the conclusion that
exponential decay withl'1.3 will persist to arbitrarily large
w. It must be noted, however, that the numerical data for
q model appear to correspond to a slightly larger value
l. This may be due either to the influence of correlations
taken into account in the mean-field calculation or possi
to the fact that the asymptotic decay rate emerges only
largerw or larger depths than were accessed in the sim
tions of Fig. 6 Thus it is difficult to extract a more accura
value of l for the a model from the data available a
present.

The maximally randomizeda model produces behavio
more closely approximated by theq model with 11% 0’s
and 1’s than by the maximally randomizedq model. Indeed,
the two models yield rather similar spatial correlations
well as single-site weight distributions. It is interesting
note that Radjaiet al. reported an exponential decay inP(w)
with l51.4 in numerical solutions for the stresses in 2D d
packings in squares of side length;30 disk diameters sub
jected to large external loading@12#, not far from the value
predicted by thea model. In three dimensions, a simila
singular q distribution was also found to agree best w
dynamical simulations of spherical grains@6#. It is also worth
emphasizing that in both thea model and theq model with
an appropriateq-distribution, there is significant evolution o
P(w) for depths up to 450, even for small values ofw.

As shown above for the silo geometry, thea model does
provide a plausible picture of the macroscopic stress fi
Unlike continuum theories, however, thea model can also
provide details on the scale of the grain size. Figure 9 sh
a typical portion of a configuration at large depth for thea
model. Both the vertical and horizontal forces applied
each cell from above are shown. These images reveal
weight is supported by a network of arches with thickness
the order of the grain size. The appearance of such struct
in a random model of this type is a nontrivial observation,
different ways of choosing (a0 ,a1 ,a2) can lead to substan
tially thicker chains and even nearly uniform distributions

Finally, a remark on the effect of changingK is in order.
ChangingK to 100 in thea model generates direct solution
at 16% of the cells, but has little effect on the results d
scribed above. ChangingK to order 1, however, creates
marked increase in the lengths and directions of the st
chains. A visual comparison of configurations obtained w
K set to 1 or 1000 is shown in Fig. 10.

CONCLUSIONS

The nct lattice is rich enough to describe the stress fi
in any material, with the scale of the cell size being com
pletely arbitrary. For the case of noncohesive granular m
rials with the cell size equated with the average grain s
however, simplifying assumptions can be made that lea
nontrivial predictions.

The a model studied in this paper includes particu
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choices of a few parameters that influence the details of
distributions. The latter category of choices has to do w
the distribution of mass within each cell~the parameters
u,mg), the precise form of the direct solution used whe
random attempts fail, and the assumption that all force in
dent on the wall cells is simply absorbed. Variations in ho
these choices are made might be expected to correspon
different choices for classical parameters such as the w
material friction angle and the internal friction angle, whic
would be reflected in the value ofk.

Another parameter that can have a noticeable influence
the force configurations is the cutoffK that roughly deter-
mines how often the direct solution must be used. WhenK is
small, the direct solution is used often and the details of h

FIG. 9. Microscopic arching in thea model.~a! Vertical forces
supported by individual cells in thea model with K51000.
Darker cells support larger vertical forces. The picture shown i
detail of a larger configuration, corresponding to a section the lo
ermost 70 layers in a system 240 layers deep. A clear central
can be seen, together with several smaller arches.~b! Horizontal
forces in the same region as~a!. Darker cells are being pushed t
the left by cells above them and lighter ones to the right. The a
apparent in~a! is seen here to have the expected structure of h
zontal forces.
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it is implemented can be important. For largeK, however,
the direct solution is used only in situations where the ra
of possible solutions is highly restricted anyway, so that
possible choices are actually quite close to the direct s
tion. For this reason, the configurations generated withK
51000 are excellent approximations to the maximally ra
domizeda model.

The present version of the model includes an assump
that permits configurations to be generated by propaga
forces down from the top@restriction~iii !#. This assumption
is not rigorously justifiable and may well be expected to f
in situations where strain effects are important. Savage
emphasized the importance of such effects, especially in

FIG. 10. Comparison of thea model with large and smallK.
The vertical force on each cell is shown for periodic bound
conditions. At each layer the force is normalized by the layer de
~a! K51000, resulting in use of the direct solution for 3% of th
cells.~b! K51, resulting in use of the direct solution for 80% of th
cells.
e
ll
u-

-

n
g

as
he

case of a free-standing pile. The boundary condition at
bottom of the pile~the stiffness of the supporting substrat
for example! is known to be important in determining th
stress field@13#. From the perspective taken in the curre
work, the question posed by the influence of the bound
conditions is how the boundary conditions affect the dis
bution ofa ’s. Investigation of this issue might be possible
restriction~iii ! can be discarded and an algorithm develop
for finding solutions consistent with appropriate bounda
conditions on all sides of the lattice, including the bottom.
any case, thea model is designed primarily to lend insigh
into microscopic and macroscopic fluctuations, not to inv
tigate the details of how boundary conditions affect the
erage stress field.

The solutions obtained from thea model as constituted
in this paper are sufficiently compatible with experiments
average stresses@11# and fluctuations@14,15# to warrant fur-
ther study. Thea model allows study of the qualitative fea
tures of the stresses at the grain size scale under the sim
physically consistent assumptions for the form of the g
metric disorder. The effect of the disorder is taken to per
all possible solutions of the local force and torque balan
equations with uniform probability in the solution space p
rametrized bya0, a1, and a2. Further work is needed to
determine the sensitivity of the results to changes in
probability measure on this space.

From the data presented in this paper, it appears that
2D a model predicts a weight distribution that decays
exp(21.3w), consistent withq model predictions if and only
if an appropriate singular distribution ofq’s is used. For such
a q distribution, theq model also yields spatial correlation
similar to thea model. This may be taken both as an ind
cation that the primary influence of the torque and horizon
force balance constraints is to select a particular form for
probability with which vertical force is transmitted betwee
adjacent sites and as a justification of the use of theq mod-
el for understanding the basic structure of the stress fluc
tions.

In the silo geometry, thea model achieves a possibl
unexpected measure of success that is not obtainable by
justing parameters in theq model. The form of the averag
stresses generated by thea model agrees rather well with
experiments@11#. This type of behavior arises also from th
Mohr-Coulomb constitutive relation, which assumes that
material is at incipient yield everywhere. Thea model makes
the rather different assumption that on the scale of the g
size the stress is as random as it can be without violating
fundamental conditions of stress equilibrium. The fact th
this ‘‘works’’ suggests a conceptually different approach
the description of stress configurations in granular materi

Another intriguing connection of thea model to recent
work involves the explicit description of torques at th
granular level. Experimental studies of the thickness of sh
bands and also recent work on continuum models that
clude the dynamics of a field that characterizes the lo
rotation of the material, known as Cosserat continuum m
els, have shown that shear bands tend to have characte
widths on the order of 10–20 grain diameters@16,17#. The
occurrence of a similar length scale ina model correlations
suggests that the two approaches may be linked in a m

y
h.
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profound way than has yet been understood.
Generalization of thenct lattice anda model to three

dimensions is straightforward but requires a substanti
larger number of variables per cell. Using a face-center
cubic lattice oriented with the 111 axis on the vertical, o
finds that there are 18 variables that must be computed
each cell. For each of the three downward-facing faces,
must find a normal force, two components of the tangen
force, two components of the couple~about the two axes tha
lie in the plane of the face! associated with the normal force
and a third ‘‘torsional’’ couple~about the axis perpendicula
to the face! determined by the spatial distribution of the ta
gential forces. The generalizations of Eqs.~6!, ~7!, and ~9!
provide six constraints, one for each component of force
torque. The resulting 12-dimensional space of possible s
tions can be parametrized by sixa ’s relating the normal
couples to the normal forces, three more analogous to tha0
of the 2D model, and the three torsional couples. The h
dimension of the solution space for a single cell makes
random guessing approach rather inefficient and statistic
significant data have not yet been obtained.
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APPENDIX: MEAN-FIELD CALCULATION OF l

FOR THE q MODEL

Coppersmithet al. have derived several important resu
concerning the behavior ofP(w) at largew in the q model
for various choices of the distribution ofq’s @6#. Defineh(q)
as the probability that a given bond between cells will ca
a fractionq of the vertical force exerted by the higher ce
Coppersmithet al. show that P(w) decays as exp(2lw)
with l52 in two dimensions for anyh(q) that has no sin-
gular contributions atq50 ~or q51). They also show, how
ever, that different values ofl can be obtained if such sin
gularities are present.

This appendix extends their mean-field calculations to
case of distributions of the form

h~q!5
u

2
@d~q!1d~q21!#1~12u! ~A1!

in two dimensions, for which analytic results are obtainab
The term ‘‘mean field’’ here refers to the fact that all corr
lations between weights on adjacent sites are neglected.
known that the mean-field result is exact for certain spe
distributions, including the uniform one, and also that ev
in cases where it is not exactly correct, the deviations from
are small for large vertical forces. The calculation utilizes
Laplace transform formalism described in Secs. II D of R
@6#. Several results obtained there will be quoted here w
out explicit derivation.
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Let P̃(s) be the Laplace transform of the steady-sta
weight distributionP(w) at large depths.P̃(s) satisfies Eq.
~2.11! of Ref. @6#, reproduced here for the case of two d
mensions only:

P̃~s!5F E
0

1

dq h~q!P̃~sq!G2

. ~A2!

In addition, normalization conditions imply thatP̃(0)51
andP̃(s)→12s ass→0. Substituting the desired form ofh
yields

P̃~s!5Fu

2
@11 P̃~s!#1~12u!E

0

1

dq P̃~sq!G2

.

~A3!

Defining R̃(s)5AP̃ and changing variables in the integra
we have

R̃~s!5
u

2
@11R̃2~s!#1~12u!

1

sE0

s

dx R̃2~x!. ~A4!

Multiplying by s and differentiating both sides gives

dR̃

ds
5

u

2
2R̃1S 12

u

2D R̃2

s~12uR̃!
, ~A5!

which can be solved fors in terms ofR̃, yielding

bs5
R̃21

@u1~u22!R̃#~21u!/~22u!
, ~A6!

whereb is a constant of integration. Note that the norm
ization conditions onP̃ imply R̃512s/2 in the vicinity of
s50. Substituting this form forR̃ in Eq. ~A6!, expanding
abouts50 on the right-hand side, and equating coefficie
of the first-order term yields

b5
1

2
~2u22!2~21u!/~22u!. ~A7!

The inverse Laplace transform ofP̃(s) will be propor-
tional to exp(s0w) at largew, with s0 being the largest value
of s for which P̃(s) has a singularity, which occurs wherev
R̃(s) either has a pole or is of the formc1(s2s0)n with the
constantcÞ0 and the exponentn being nonintegral.~If c
50, then half-integraln also does not yield a singularity in
R̃2.! Although Eq. ~A6! cannot be inverted to obtainR̃(s)
explicitly, the position of the singularity inR̃(s) can be de-
termined. First note that for 0,u,1 Eq. ~A6! implies that
R̃(s) can diverge only ats50; since the coefficient ofR̃ in
the denominator has magnitude greater than unity and
exponent is greater than one, the denominator must grow
magnitude faster than the numerator asuR̃u goes to infinity.
The possible divergence ats50 arises only because we mu
tiplied by s to obtain Eq.~A5!. ~As mentioned above,R̃ is
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known to approach 1 ats50.! Next note thatdR̃/ds must

diverge at any value ofs for which R̃51/u, and only at those
points, as is evident from Eq.~A5! and the fact thatR̃ itself
does not diverge. Finally, repeated differentiation of E
~A5! reveals that higher derivatives ofR̃ cannot diverge at
any point where the first derivative does not diverge. Th
the singularity inR̃ can be located by settingR̃51/u in Eq.
~A6! and combining with Eq.~A7! to determines. The result
is that the singularity occurs at

s052S 12
1

u D S 2u

21u D ~21u!/~22u!

. ~A8!

s0 approaches 0 asu approaches 0, which may be expect
given thatu50 corresponds to the critical distribution fo
which theq model exhibits power-law decay inP(w) @6#.
-

,

da
.

s

Moreover,s0 approaches22 asu approaches 1, indicating
smooth convergence to the result derived for the unifo
distribution. ~The case ofu50 must be treated separatel
however, and it is seen thatR̃ develops a pole at22.! Fi-
nally, the exponentn at the singularity may be obtained from
limR̃→1/uln(d2R̃/ds2)/ln(dR/ds)5(n22)/(n21), which yields
n51/2. Thus there is a single singularity inR̃(s) and in the
vicinity of the singularity we haveR̃5(1/u)1A(s2s0),
with s0 given above. This result is consistent with the cla
in Ref. @6# that P̃(s) has a square-root singularity for an
h(q) having ad-function component atq50.

In order to compare to the numerical results for thea
model, it is useful to find the value ofu that produces a
decay with l51.3. From Eq. ~A8! one sees thats0
'21.30 . . . isproduced byu50.11, which is the reason
that this value was chosen for plotting in Figs. 6 and 8.
Du-
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